1.แบบจำลองอะตอม
1.1แบบจำลองอะตอมของดอลตัน
ในปี พ.ศ. 2346
(ค.ศ. 1803) จอห์น ดอลตัน (John Dalton)
นักวิทยาศาสตร์ชาวอังกฤษได้เสนอทฤษฎีอะตอม พื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสารก่อนและหลังทำปฏิกิริยา
รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสารประกอบ ซึ่งสรุปได้ดังนี้
1. ธาตุประกอบด้วยอนุภาคเล็กๆหลายอนุภาคเรียกอนุภาคเหล่านี้ว่า
“อะตอม” ซึ่งแบ่งแยกและทำให้สูญหายไม่ได้
2. อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน
แต่จะมีสมบัติ แตกต่างจากอะตอมของธาตุอื่น
3. สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยา
เคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อยๆ
จอห์น ดอลตัน ชาวอังกฤษ
เสนอทฤษฎีอะตอมของดอลตัน
– อะตอมเป็นอนุภาคที่เล็กที่สุด
แบ่งแยกอีกไม่ได้
– อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน
-อะตอมต้องเกิดจากสารประกอบเกิดจากอะตอม
ของธาตุตั้งแต่ 2 ชนิดขึ้นไปมารวมตัวกันทางเคมี
1.2แบบจำลองอะตอมของทอมสัน
1.3แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
เออร์เนสต์ รัทเธอร์ฟอร์ด (Ernest
Rutherford) ได้ทำการทดลองยิงอนุภาคแอลฟา (
นิวเคลียสของอะตอมฮีเลียม ) ไปที่แผ่นโลหะบาง
จากการทดลองนี้ รัทเธอร์ฟอร์ดจึงได้เสนอแบบจำลองอะตอมว่า
" อะตอมมีลักษณะโปร่ง
ประกอบด้วยประจุไฟฟ้าบวกที่รวมกันอยู่ที่ศูนย์กลางเรียกว่า นิวเคลียส
ซึ่งถือว่าเป็นที่รวมของมวลเกือบทั้งหมดของอะตอม
โดยมีอิเล็กตรอนเคลื่อนที่รอบๆนิวเคลียสด้วยระยะห่างจากนิวเคลียสมาก
เมื่อเทียบกับขนาดของนิวเคลียส
และระหว่างนิวเคลียสกับอิเล็กตรอนเป็นที่ว่างเปล่า"
แต่แบบจำลองนี้ยังมีข้อกังขาที่ยังไม่สามารถหาคำตอบได้คือ
1.อิเล็กตรอนที่เคลื่อนที่โดยมีความเร่งจะแผ่คลื่นแม่เหล็กไฟฟ้าออกมา
ทำให้พลังงานจลน์ลดลง ทำไมอิเล็กตรอนวิ่งวนรอบนิวเคลียสตามแบบจำลองของรัทเธอร์ฟอร์ด
จึงไม่สูญเสียพลังงาน และไปรวมอยู่ที่นิวเคลียส
2. อะตอมที่มีอิเล็กตรอนมากกว่าหนึ่งตัว
เมื่อวิ่งวนรอบนิวเคลียสจะจัดการเรียงตัวอย่างไร
3. ประจุบวกที่รวมกันอยู่ในนิวเคลียส
จะอยู่กันได้อย่างไร ทั้งๆที่เกิดแรงผลัก
1.4แบบจำลองอะตอมของโบร์
โบร์ได้ศึกษาแบบจำลองอะตอมขึ้นมาโดยนำแบบจำลองอะตอมของรัทฟอร์ดมาแก้ไข
เขาศึกษาสเปกตรัมการเปล่งแสงของธาตุ โดยบรรจุแก๊สไฮโดรเจนในหลอดปล่อยประจุ จากนั้นให้พลังงานเข้าไป
จากการทดลอง
อิเล็กตรอนเคลื่อนจากขั้วบวกไปขั้วลบชนกับแก๊สไฮโดรเจน
จากนั้นเปล่งแสงออกมาผ่านปริซึมทำให้เราเห็นเป็นเส้นสเปกตรัมสีต่าง ๆ
ตกบนฉากรับภาพ
การเปล่งแสงของธาตุไฮโดรเจน
เกิดจากอิเล็กตรอนเปลี่ยนระดับพลังงานจากวงโคจรสูงไปสู่วงโคจรต่ำ
พร้อมทั้งคายพลังงานในรูปแสงสีต่าง ๆ
สรุปแบบจำลองอะตอมของโบร์
1. อิเล็กตรอนจะอยู่กันเป็นชั้น
ๆ แต่ละชั้นเรียกว่า “ระดับพลังงาน”
2. อิเล็กตรอนที่อยู่ในระดับพลังงานวงนอกสุดเรียกว่า
เวเลนซ์อิเลคตรอน (Valent electron)จะเป็นอิเลคตรอน
ที่เกิดปฏิกิริยาต่าง ๆ ได้
3. อิเล็กตรอนที่อยู่ในระดับพลังงานวงในอยู่ใกล้นิวเคลียส
จะเสถียรมากเพราะประจุบวกจากนิวเคลียสดึงดูด
ไว้อย่างดี ส่วน อิเล็กตรอนระดับพลังงานวงนอจะไม่เสถียรเพราะนิวเคลียสส่งแรงไปดึงดูดได้น้อยมาก
4. ระดับการพลังงานวงในจะอยู่ห่างกันมาก
ส่วนระดับพลังงานวงนอกจะอยู่ชิดกันมาก
5. การเปลี่ยนระดับพลังงานของอิเลคตรอน
ไม่จำเป็นต้องเปลี่ยนในระดับถัดกัน อาจเปลี่ยนข้ามระดับพลังงานกันก็ได้
1.5แบบจำลองอะตอมแบบกลุ่มหมอก
สรุปแบบจำลองอะตอมแบบกลุ่มหมอกแบบจำลองนี้เชื่อว่า
1. อิเล็กตรอนไม่ได้เคลื่อนที่เป็นวงกลม
แต่เคลื่อนที่ไปรอบๆนิวเคลียส
เป็นรูปทรงต่างๆตามระดับพลังงาน
2. ไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้ เนื่องจากอิเล็กตรอนมีขนาดเล็กมาก
และเคลื่อนที่รวดเร็วตลอดเวลาไปทั่วทั้งอะตอม
3. อะตอมประกอบด้วยกลุ่มหมอกของอิเล็กตรอนรอบนิวเคลียส
บริเวณที่มีหมอกทึบ
แสดงว่ามีโอกาสพบอิเล็กตรอนได้มากกว่าบริเวณที่มีหมอกจาง
2.อนุภาคในอะตอมและไอโซโทป
2.1 อนุภาคในอะตอม
ไม่มีความก้าวหน้าในการทำความเข้าใจกับอะตอมเพิ่มมากขึ้นนักจนกระทั่งศาสตร์ทางด้านเคมีเริ่มพัฒนาขึ้น
ในปี ค.ศ. 1661 นักปรัชญาธรรมชาติ โรเบิร์ต บอยล์ เผยแพร่งานเขียนเรื่อง The
Sceptical Chymist ซึ่งเขาเห็นว่าสสารประกอบขึ้นจากส่วนประกอบหลากหลายระหว่าง
"corpuscules" หรืออะตอมที่แตกต่างกัน
ซึ่งต่างไปจากธาตุพื้นฐานทั้งสี่คือ อากาศ ดิน ไฟ และน้ำ ปี ค.ศ. 1789
ขุนนางชาวฝรั่งเศสและนักวิจัยทางวิทยาศาสตร์ อองตวน ลาวัวซิเยร์ กำหนดคำว่า ธาตุ เพื่อใช้ในความหมายถึงสสารพื้นฐานที่ไม่สามารถแบ่งแยกด้วยกระบวนการทางเคมีต่อไปได้อีก
แม้คำว่า อะตอม
จะมีกำเนิดจากรากศัพท์ที่มีความหมายถึงอนุภาคที่เล็กที่สุดซึ่งไม่สามารถแบ่งได้อีกต่อไป
แต่การใช้งานในทางวิทยาศาสตร์สมัยใหม่นั้น
อะตอมยังประกอบด้วยอนุภาคที่เล็กกว่าอะตอมอีกมากมาย อนุภาคที่เป็นส่วนประกอบของอะตอมได้แก่
อิเล็กตรอน โปรตอน และนิวตรอน
2.2เลขอะตอม เลขมวล และไอโซโทป
เลขอะตอม
คือ จำนวนโปรตอนในนิวเคลียสของแต่ละอะตอมของธาตุ
ในอะตอมที่เป็นกลางจะมีจำนวนโปรตอนเท่ากับจ้านวนอิเล็กตรอน
ดังนั้นเลขเชิงอะตอมจึงบอกจำนวนของอิเล็กตรอนของธาตุได้ด้วย
เนื่องจากอะตอมของธาตุชนิดเดียวกันมีค่าเลขเชิงอะตอมเท่ากันเสมอ
เลขเชิงอะตอมจึงป็นเอกลักษณ์ของธาตุชนิดเดียวกัน
เลขมวล คือ
ผลรวมของนิวตรอนและโปรตอนที่มีในนิวเคลียสของอะตอมของธาตุ นิวเคลียสในอะตอมอื่นๆ
ทั้งหมดจะมีทั้งโปรตอนและนิวตรอนอยู่
โดยทั่วไปแล้วเลขมวลหาได้ดังนี้
เลขมวล
= จำนวนโปรตอน + จำนวนนิวตรอน
= เลขอะตอม + จำนวนนิวตรอน
จำนวนนิวตรอนในอะตอม = เลขมวล -เลขอะตอม
ไอโซโทป (isotope)
หมายถึง อะตอมของธาตุชนิดเดียวกันที่มีเลขอะตอม (Z) เท่ากัน แต่เลขมวล (A) ไม่เท่ากัน ตัวอย่างเช่น
อะตอมของไฮโดรเจนมีเลขมวลสามชนิดโดยแตกต่างกันที่จำนวนนิวตรอน ได้แก่
ไฮโดรเจน (Hydrogen)
มี 1 โปรตอนและไม่มีนิวตรอน มีสัญลักษณ์ 11H
ดิวทีเรียม (Deuterium)
มี 1 โปรตอนและมี 1 นิวตรอน มีสัญลักษณ์ 21H
ทริเทียม (Tritium) มี 1 โปรตอนและมี 2
นิวตรอน มีสัญลักษณ์ 31H
3.การจัดเรียงอิเล็กตรอนในอะตอม
3.1จำนวนอิเล็กตรอนในแต่ละระดับพลังงาน
อิเล็กตรอนในอะตอมที่อยู่ ณ ระดับพลังงาน (energy
levels หรือ shell) จะมีพลังงานจำนวนหนึ่ง
ส้าหรับอิเล็กตรอนที่อยู่ใกล้นิวเคลียสมากที่สุดจะมีพลังงานน้อยกว่าพวกที่อยู่ไกลออกไป
ยิ่งอยู่ไกลมากยิ่งมีพลังงานมากขึ้น โดยกำหนดระดับพลังงานหลักให้เป็น n ซึ่ง n เป็นจ้านวนเต็มคือ 1, 2,
… หรือตัวอักษรเรียงกันดังนี้ คือ K, L, M, N, O, P, Q ตามล้าดับ เมื่อ n = 1 จะเป็นระดับพลังงานต่ำสุด
หมายความว่า จะต้องใช้พลังงานมากที่สุดที่จะดึงเอาอิเล็กตรอนนั้นออกจากอะตอมได้
จำนวนอิเล็กตรอนที่จะมีได้ในแต่ละระดับพลังงานหลักต้องเท่ากับหรือไม่เกิน 2n2 และจำนวนอิเล็กตรอนในระดับนอกสุดจะต้องไม่เกิน 8
3.2ระดับพลังงานหลัก และ ระดับพลังงานย่อย
การจัดอิเล็กตรอนในระดับพลังงานหลัก
ทำให้แต่ละระดับพลังงานมีจำนวนอิเล็กตรอนมากจึงเกิดปัญหาว่าอิเล็กตรอนเหล่านั้นอยู่ในระดับพลังงานเดียวกันได้อย่างไร
ทำไมจึงไม่ผลักกัน เพื่อแก้ปัญหาดังกล่าว
นักวิทยาศาสตร์จึงได้ศึกษาเกี่ยวกับระดับพลังงานย่อยเพื่อกระจายอิเล็กตรอนในแต่ละระดับพลังงานหลัก
เข้าสู่ระดับพลังงานย่อย โดยอาศัยรูปแบบโคจรของอิเล็กตรอนรอบ ๆ
นิวเคลียสเป็นเกณฑ์ในการแบ่งอิเล็กตรอนเป็นกลุ่มย่อย ๆ
และเรียกรูปแบบวงโคจรนี้ว่าออร์บิทัล (Orbital) โดย
1 ออร์บิทัลจะมีอิเล็กตรอนได้ไม่เกิน 2 อิเล็กตรอน ระดับพลังงานย่อยมี 4 ระดับ คือ
s, p, d, f โดยระดับพลังงานย่อยมี
s มี 1 ออร์บิทัล
บรรจุอิเล็กตรอนได้สูงสุด 2 อิเล็กตรอน
p มี 3 ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด 6 อิเล็กตรอน
d มี 5 ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด 10 อิเล็กตรอน
f มี 7 ออร์บิทัล บรรจุอิเล็กตรอนได้สูงสุด 14 อิเล็กตรอน
การจัดเรียงอิเล็กตรอนในระดับพลังงานย่อย
1.จัดอิเล็กตรอนในระดับพลังงานย่อยต่าง ๆ
จะต้องจัดเข้าในระดับพลังงานย่อยที่มีพลังงานต่ำสุดก่อนแล้วจึงจัดเข้าสู่ระดับพลังงานย่อยที่มีพลังงานสูงขึ้น(ตามหลักของเอาฟบาว)
2.อิเล็กตรอน 2 ตัว
ที่อยู่ในออร์บิทัลเดียวกัน
จะต้องมีทิศทางการเคลื่อนที่สวนทางกันโดยแสดงทิศทางด้วยลูกศร ตามหลักการของเพาลี
3.การจัดอิเล็กตรอนเข้าสู่ระดับพลังงานย่อย
ถ้าอิเล็กตรอนบรรจุอยู่กึ่งหนึ่งหรือบรรจุเต็มออร์บิทัลจะมีโครงสร้างแบบเสถียร
3.3ออร์บิทัล
อิเล็กตรอนที่วิ่งอยู่รอบ
ๆ นิวเคลียสนั้น เราไม่สามารถกำหนดตำแหน่ง ความเร็ว ทิศทางหรือวิถีโคจรได้
แต่เราสามารถคำนวณหาโอกาสที่จะพบอิเล็กตรอนอนุภาคใดอนุภาคหนึ่งขณะใดขณะหนึ่งที่ตำแหน่งต่าง
ๆ และศึกษาคุณสมบัติของอิเล็กตรอนได้โดยอาศัยกฎของไฮเซนเบอร์ก (Heisenberg)
และสมการคลื่นของโชรดิงเจอร์ (Schroedinger) ขอบเขตที่เราสามารถพบอิเล็กตรอน
อนุภาคใดอนุภาคหนึ่ง ในเวลาใดเวลาหนึ่ง เรียกว่าออร์บิทัล (orbital)หรือ หมอกอิเล็กตรอน (electron cloud) กลุ่มของออร์บิทัลที่มีระดับพลังงานเท่ากัน
เรียกว่าเชลล์ย่อย (subshell)และกลุ่มของเซลล์ย่อย เรียกว่า
เชลล์( shell )
4.ตารางธาตุและสมบัติของธาตุตามหมู่หลัก
4.1วิวัฒนาการของการสร้างตารางธาตุ
ในปี พ.ศ.2360
(ค.ศ. 1817) โยฮันน์
เดอเบอไรเนอร์เป็นนักเคมีคนแรกที่พยายามจัดธาตุเป็นกลุ่มๆ ละ 3 ธาตุตามสมบัติที่คล้ายคลึงกันเรียกว่า ชุดสาม
โดยพบว่าธาตุกลางจะมีมวลอะตอม *เป็นค่าเฉลี่ยของมวลอะตอมของอีกสองธาตุที่เหลือ
ตัวอย่างธาตุชุดสามของเดอเบอไรเนอร์ เช่น Na เป็นธาตุกลางระหว่าง
Li กับ K มีมวลอะตอม 23 ซึ่งเป็นค่าเฉลี่ยของมวลอะตอมของธาตุ Li
ซึ่งมีมวลอะตอม 7 กับธาตุ K ซึ่งมีมวลอะตอม 39
แต่เมื่อนำหลักของชุดสามไปใช้กับธาตุกลุ่มอื่นที่มีสมบัติคล้ายกัน
พบว่าค่ามวลอะตอมของ ธาตุกลางไม่เท่ากับค่าเฉลี่ยของมวลอะตอมของสองธาตุที่เหลือ
หลักชุดสามของเดอเบอไรเนอร์จึงไม่เป็นที่ยอมรับในเวลาต่อมา
ในปี พ.ศ. 2407 จอห์น นิวแลนด์
นักวิทยาศาสตร์ชาวอังกฤษได้เสนอกฎในการจัดธาตุเป็นหมวดหมู่ว่า
ถ้าเรียงธาตุตามมวลอะตอมจากน้อยไปมากพบว่าธาตุที่
8
จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ
(ไม่รวมธาตุไฮโดรเจนและแก๊สเฉื่อย)
ยูลิอุสโลทาร์ ไมเออร์
นักวิทยาศาสตร์ชาวเยอรมันและดิมิทรี อิวา-โนวิช เมนเดเลเอฟ
นักวิทยาศาสตร์ชาวรัสเซีย ได้ศึกษารายละเอียดของธาตุต่างๆ
มากขึ้นทำให้มีข้อสังเกตเช่นเดียวกันว่า
ถ้าเรียงธาตุตามมวลอะตอมจากน้อยไปมากจะพบว่าธาตุมีสมบัติคล้ายกันเป็นช่วงๆ
การที่ธาตุต่างๆ มีสมบัติคล้ายกันเป็นช่วงเช่นนี้เมนเดเลเอฟตั้งเป็นกฎเรียกว่า
กฎพิริออดิก และได้เสนอความคิดนี้ในปี พ.ศ. 2412
ก่อนที่ไมเออร์จะเผยแพร่ผลงานของเขาหนึ่งปีเพื่อเป็นการให้เกียรติแก่เมนเด
เลเอฟ จึงเรียกตารางนี้ว่า ตารางพิริออดิกของเมนเดเลเอฟ ในปีต่อมาเมนเดเลเอฟได้ปรับปรุงตารางธาตุใหม่
นักวิทยาศาสตร์รุ่นต่อมาเกิดแนวความคิดว่า
ตำแหน่งของธาตุในตารางธาตุไม่น่าจะขึ้นอยู่กับมวลอะตอมของธาตุ
แต่น่าจะขึ้นอยู่กับสมบัติอื่นที่มีความสัมพันธ์กับมวลอะตอม เฮนรี โมสลีย์ นักวิทยาศาสตร์ชาวอังกฤษ ได้เสนอให้จัดธาตุเรียงตามเลขอะตอม
เนื่องจากสมบัติต่างๆ
ของธาตุมีความสัมพันธ์กับประจุบวกในนิวเคลียสหรือเลขอะตอมมากกว่ามวลอะตอม
ตารางธาตุในปัจจุบันจึงได้จัดเรียงธาตุตามเลขอะตอมจากน้อยไปมากซึ่งสอดคล้อง
กับกฎพิริออดิกที่ได้กล่าวมาแล้ว
ตารางธาตุที่นิยมใช้ในปัจจุบันได้ปรับปรุงมาจากตารางธาตุของเมนเดเลเอฟ
แต่เรียงธาตุตามลำดับเลขอะตอมแทนการเรียงตามมวลอะตอม
4.2กลุ่มของธาตุในตารางธาตุ
แบ่งออกเป็น 18 แถว โดยธาตุทั้งหมด 18 แถว
แบ่งเป็น 2 กลุ่มใหญ่ คือ
กลุ่ม A มี 8 หมู่
คือ IA ถึง VIIIA
กลุ่ม B มี 8 หมู่
คือ IB ถึง VIIIB เรียกว่า ธาตุแทรนซิชัน (Transition)โดย
-ธาตุหมู่ที่ IA เรียกว่า “โลหะแอลคาไลน์” ได้แก่ Li
Na K Rb
Cs และ Fr
-ธาตุหมู่ที่ IIA เรียกว่า “ โลหะอัลคาไลน์ เอิร์ท” ได้แก่ Be
Mg Ca Sr Ba และ Ra
-ธาตุหมู่ที่ VIIA เรียกว่า “ธาตุเฮโลเจน
(Halogen)” ได้แก่ F , Cl , Br , I และ At
-ธาตุหมู่ที่ VIIIA เรียกว่า “ก๊าซเฉื่อย
(Inert gas or Noble gas)” ได้แก่ He , Ne , Ar , Kr , Xe และ Rn
4.3ขนาดอะตอม
-รัศมีโคเวเลนต์ คือ
ระยะทางครึ่งหนึ่งของความยาวพันธะโคเวเลนต์ระหว่างอะตอมชนิดเดียวกัน
-รัศมีแวนเดอร์วาลล์ คือระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมที่อยู่ใกล้ที่สุด
-รัศมีโลหะ คือ
ระยะทางครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมโลหะที่อยู่ใกล้กันมากที่สุด
4.4ขนาดไอออน
เมื่อธาตุโลหะรวมตัวกับธาตุอโลหะ
พบว่าธาตุโลหะจะเสียอิเล็กตรอนกลายเป็นไอออนบวก ส่วนธาตุอโลหะจะรับอิเล็กตรอนเป็นไอออนลบ
4.5พลังงานไอออไนเซชัน
พลังงานไอออไนเซชัน
(Ionization Energy, IE) คือค่าพลังงาน
ที่ใช้ในการดึงให้อิเล็กตรอนวงนอกสุด (เวเลนซ์อิเล็กตรอน) หลุดออกจากอะตอมหรือโมเลกุลที่อยู่ในสถานะก๊าซปริมาณพลังงานที่น้อยที่สุดที่สามารถทำให้อะตอมหรือโมเลกุลปลดปล่อยอิเล็กตรอน
ค่าพลังงานไอออไนเซชันจะบ่งบอกว่าอะตอมหรือไอออนนั้นสามารถเสียอิเล็กตรอนได้ง่ายหรือยาก
หรือในอีกมุมหนึ่งเป็นการบ่งบอกระดับพลังงานของอิเล็กตรอนวงนอกสุดของอะตอมหรือไอออนนั้นว่ามีความเสถียรมากเพียงใด
โดยทั่วไปค่าพลังงานไอออไนเซชันจะมีค่าเพิ่มขึ้นเมื่อพยายามที่จะทำให้อิเล็กตรอนตัวต่อไปถูกปลดปล่อยออกมา
เนื่องจากการผลักกันของประจุอิเล็กตรอนมีค่าลดลงและการกำบังของอิเล็กตรอนชั้นวงในมีค่าลดลง
ซึ่งทำให้แรงดึงดูดระหว่างนิวเคลียสและอิเล็กตรอนมีค่ามาขึ้น
อย่างไรก็ตามค่าที่เพิ่มขึ้นอาจไม่เพิ่มเท่าที่ควรจะเป็นในกรณีที่เมื่อปลดปล่อยอิเล็กตรอนตัวนั้นแล้วส่งผลให้เกิดการบรรจุเต็มหรือการบรรจุครึ่งในระดับชั้นพลังงาน
เนื่องจากทั้งสองกรณีมีเสถียรภาพเป็นพิเศษ
4.6สัมพรรคภาพอิเล็กตรอน
คือค่าที่แสดงถึงปริมาณพลังงานที่
ถูกปล่อยออกมา
เมื่ออิเล็กตรอนถูกเพิ่มเข้าไปในอะตอมหรือโมเลกุลที่เป็นกลางทางไฟฟ้า ในสถานะแก๊สเพื่อทำให้เกิดไอออนประจุลบ ในฟิสิกส์ของแข็ง คำนิยามของ
"สัมพรรคภาพอิเล็กตรอน" จะแตกต่างออกไป
โดยสัมพรรคภาพอิเล็กตรอนในความหมายของฟิสิกส์ของแข็ง คือ พลังงาน ที่ได้รับ
จากอิเล็กตรอนที่กำลังเคลื่อนที่ออกจากสุญญากาศ
X + e− → X− + energy
4.7อิเล็กโตรเนกาทิวิตี
เป็นค่าที่แสดงถึงความสามารถของอะตอมในการที่จะดึงอิเล็กตรอนเข้าหาตัวเองเมื่อเกิดพันธะเคมี
(chemical
bond) ทั้งนี้ มีการเสนอวิธีการแสดงอิเล็กโตรเนกาทิวิตีหลายวิธี
อาทิ เพาลิง สเกล (Pauling scale) ถูกเสนอในปี ค.ศ. 1932
มูลลิเกน สเกล (Mulliken scale) ถูกเสนอในปี
ค.ศ. 1934 และ ออลล์เรด-โรโชสเกล (Allred-Rochow
scale)
รัศมีอะตอม ลดลง พลังงานไอออไนเซชัน
เพิ่มขึ้น อิเล็กโตรเนกาทิวิตี เพิ่มขึ้น
5.ธาตุแทรนซิชัน
5.1สมบัติของธาตุแทรนซิชัน
โลหะทรานซิชันมีทั้งหมด 40 ตัว
จะประกอบด้วยธาตุที่มีเลขอะตอมดังนี้ 21 ถึง 30,39 ถึง 48,71 ถึง 80, และ 103
ถึง 112 ชื่อ "ทรานซิชัน" มาจากตำแหน่งของมันในตารางธาตุทั้ง 4
คาบที่มันอยู่ ธาตุเหล่านี้จะแทนการเพิ่มจำนวนอิเล็กตรอนเข้าไปอยู่ในวงโคจร ดี
ของอะตอม (atomic orbital) ด้วยเหตุนี้
โลหะทรานซิชันจึงมีความหมายถึงการส่งผ่าน (transition) ของธาตุหมู่
2 และหมู่ 13
หมู่
|
3 (III B)
|
4 (IV B)
|
5 (V B)
|
6 (VI B)
|
7 (VII B)
|
8(VIII B)
|
9(VIII B)
|
10(VIII B)
|
11 (I B)
|
12 (II B)
|
Sc 21
|
Ti 22
|
V 23
|
Cr 24
|
Mn 25
|
Fe 26
|
Co 27
|
Ni 28
|
Cu 29
|
Zn 30
|
|
Y 39
|
Zr 40
|
Nb41
|
Mo 42
|
Tc 43
|
Ru 44
|
Rh 45
|
Pd 46
|
Ag 47
|
Cd 48
|
|
Lu 71
|
Hf 72
|
Ta73
|
W 74
|
Re 75
|
Os 76
|
Ir 77
|
Pt 78
|
Au 79
|
Hg 80
|
|
Lr 103
|
Rf104
|
Db105
|
Sg106
|
Bh 107
|
Hs 108
|
Mt 109
|
Ds 110
|
Rg111
|
Cn 112
|
โลหะทรานซิชันทุกธาตุจะเป็นโลหะ แต่มีความเป็นโลหะน้อยกว่าธาตุหมู่ IA และ IIA
มีสถานะเป็นของแข็งที่อุณหภูมิห้อง ยกเว้นปรอทที่เป็นของเหลว
มีจุดหลอมเหลว จุดเดือด และความหนาแน่นสูง
นำไฟฟ้าได้ดี ซึ่งในโลหะทรานซิชัน ธาตุที่นำไฟฟ้าได้ดีที่สุดคือ เงิน (คาบ 5) และรองลงมาคือ ทอง (คาบ 6)
นำความร้อนได้ดี
ธาตุทรานซิชันทั้งหมดมีเวเลนซ์อิเล็กตรอนเท่ากับ 2 ยกเว้นธาตุโครเมียม และทองแดง ที่มีเวเลนซ์อิเล็กตรอนเป็น 1
สารประกอบของธาตุเหล่านี้จะมีสีสัน
มีพลังงานไอออไนเซชันลำดับที่ 1 และอิเล็กโทรเนกาติวิตีมาก
ขนาดอะตอม จะมีขนาดไม่แตกต่างกันมากโดยที่
ในคาบเดียวกันจะเล็กจากซ้ายไปขวา
ในหมู่เดียวกันจะใหญ่จากบนลงล่าง
ธาตุเหล่านี้มีหลายออกซิเดชั่นสเตตส์ (oxidation states)
ธาตุเหล่านี้เป็นตัวเร่งปฏิกิริยา (catalysts) ที่ดี
ธาตุเหล่านี้มีสีฟ้า-เงินที่อุณหภูมิห้อง (ยกเว้นทองคำและทองแดง)
สารประกอบของธาตุเหล่านี้สามารถจำแนกโดยการวิเคราะห์ผลึก
6.ธาตุกัมมันตรังสี
ธาตุกัมมันตรังสี หมายถึงธาตุที่แผ่รังสีได้
เนื่องจากนิวเคลียสของอะตอมไม่เสถียร เป็นธาตุที่มีเลขอะตอมสูงกว่า 82
กัมมันตภาพรังสี
หมายถึงปรากฏการณ์ที่ธาตุแผ่รังสีได้เองอย่างต่อเนื่อง รังสีที่ได้จากการสลายตัว
มี 3 ชนิด คือ รังสีแอลฟา รังสีบีตา และรังสีแกมมา
ในนิวเคลียสของธาตุประกอบด้วยโปรตอนซึ่ง
มีประจุบวกและนิวตรอนซึ่งเป็นกลางทางไฟฟ้า
สัดส่วนของจำนวนโปรตอนต่อจำนวนนิวตรอนไม่เหมาะสมจนทำให้ธาตุนั้นไม่เสถียร
ธาตุนั้นจึงปล่อยรังสีออกมาเพื่อปรับตัวเองให้เสถียร
ซึ่งเป็นกระบวนการที่เกิดขึ้นเองตามธรรมชาติ
6.1การเกิดธาตุกัมมันตรังสี
1.
เกิดจากนิวเคลียสในสภาวะพื้นฐานได้รับพลังงาน
ทำให้นิวเคลียสกระโดดไปสู่ระดับพลังงานสูงขึ้น ก่อนกลับสู่สภาวะพื้นฐาน
นิวเคลียสจะคายพลังงานออกมาในรูปรังสีแกมมา
2.
เกิดจากนิวเคลียสที่อยู่ในสภาพเสถียร แต่มีอนุภาคไม่สมดุล
นิวเคลียสจะปรับตัวแล้วคายอนุภาคที่ไม่สมดุลออกมาเป็นอนุภาคแอลฟาหรือเบตา
6.2การสลายตัวของไอโซโทปกัมมันตรังสี
การแผ่รังสีแอลฟา
เมื่อไอโซโทปกัมมันตรังสีให้อนุภาคแอลฟา
นิวเคลียสของไอโซโทปเสีย 2 โปรตอน และ 2นิวตรอน ดังนั้น
ไอโซโทปกัมมันตรังสีจะเปลี่ยนไปเป็นธาตุอื่นที่มีเลขเชิงอะตอมต่ำกว่าเดิม 2 อะตอมและมีมวลต่ำกว่าเดิม 4 amu ตัวอย่างเช่น เมื่อ
92238U ให้อนุภาคแอลฟา ผลที่เกิดขึ้นจะให้ 90234Th สมการของปฏิกิริยาที่เกิดขึ้นเป็นดังนี้
92238U 24He+90234Th
การแผ่รังสีบีตา
การให้รังสีบีตาจะเกิดนิวเคลียสที่มีสัดส่วนของจำนวนนิวตรอนมากกว่าโปรตอน
ตัวอย่างเช่น การแผ่รังสีบีตาของC-14 ไปเป็น N-14 C-14 ให้อนุภาคบีตา
อนุภาคบีตาหรืออิเล็กตรอนเชื่อกันว่ามาจากนิวเคลียส
เมื่อนิวตรอนสลายตัวไปเป็นโปรตอน 11H และอิเล็กตรอนดังนี้
01n----------> 11H+-10e
เมื่ออิเล็กตรอนเกิดขึ้น
อิเล็กตรอนจะถูกปล่อยออกจากนิวเคลียสด้วยความเร็วสูงแต่โปรตอนยังคงอยู่ผลที่เกิดขึ้นทำให้นิวเคลียสมีจำนวนนิวตรอนลดลงไป
1 นิวตรอน
และมีโปรตอนเพิ่มขึ้นอีก 1 โปรตอน ในกรณี C-14 ให้อนุภาคบีตา สมการ นิวเคลียร์จะเป็นดังนี้
614C------- >714 N+-10e
จากสมการจะเห็นว่าเลขเชิงอะตอมเพิ่มขึ้น
1 หน่วย
และเลขมวลมีค่าคงที่
การแผ่รังสีแกมมา
การให้อนุภาคแอลฟาหรืออนุภาคอย่างใดอย่างหนึ่ง
มักจะติดตามด้วยการแผ่รังสีแกมมา รังสีแกมมาถูกปล่อยออกมาเมื่อนิวเคลียสเปลี่ยนจากสถานะเร้าหรือสถานะพลังงานสูง
ไปยังสถานะที่มีพลังงานต่ำกว่าเนื่องจากรังสีแกมมาไม่มีทั้งประจุและมวล
การแผ่รังสีแกมมาจึงไม่ทำให้มีการเปลี่ยนแปลงเลขมวลหรือเลขเชิงอะตอมของนิวเคลียสอย่างใดอย่างหนึ่ง
รังสีแกมมานำไปใช่รักษาโรค เป็นรังสีแกมมาที่มาจากเทคนิเทียม
4399Tc------> 4399Tc+y
เมื่อ Ra-226เปลี่ยนไปเป็น
Rn-222 โดยการแผ่รังสีแอลฟานั้น Rn-222
ไม่เสถียรภาพจึงแผ่รังสีแกมมาออกมา
6.3อันตรายจา กไอโซโทปกัมมันตรังสี
ความผิดปกติอันเกี่ยวข้องกับระบบผลิตเลือด
(hematopoietic
syndrome) ความผิดปกติแบบนี้
สามารถเกิดขึ้นได้เมื่อได้รับรังสีสูงแบบเฉียบพลันทั่วทั้งร่างกายที่ปริมาณรังสี 0.7
เกรย์ โดยอาจปรากฎอาการผิดปกติเพียงเล็กน้อยเมื่อได้รับรังสีปริมาณ 0.3
เกรย์ โดยสาเหตุหลักของการเสียชีวิตในผู้ป่วย กลุ่มนี้ คือ
การติดเชื้อและการเสียเลือดอันเนื่องมาจากไขกระดูกถูกทำลาย
ความผิดปกติ
โดยสมบูรณ์จะเกิดขึ้นเมื่อได้รับรังสีเฉียบพลันทั่วร่างกายสูงเกิน 10 เกรย์
โดยความผิดปกติแบบอ่อน ๆ จะเกิดขึ้นเมื่อได้รับรังสีประมาณ 6 เกรย์ ทั้งนี้
อัตราการรอดชีวิตเมื่อได้รับรังสีสูงระดับนี้มีน้อย
หากระบบทางเดินอาหารเปลี่ยนแปลง ได้รับความเสียหาย จะทำให้เกิดการติดเชื้อ
เสียสมดุลของน้ำและเกลือแร่ โดยผู้ป่วยจะเสียชีวิตภายในระยะเวลา 2 สัปดาห์
6.4ครึ่งชีวิตของไอโซโทปกัมมันตรังสี
ครึ่งชีวิตของธาตุ (half
life) หมายถึง
ระยะเวลาที่สารสลายตัวไปจนเหลือเพียงครึ่งหนึ่งของปริมาณเดิมใช้สัญลักษณ์เป็น t1/2 นิวเคลียสของธาตุกัมมันตรังสีที่ไม่เสถียร
จะสลายตัวและแผ่รังสีได้เองตลอดเวลาโดยไม่ขึ้นอยู่กับอุณหภูมิหรือความดัน
อัตราการสลายตัว เป็นสัดส่วนโดยตรงกับจำนวนอนุภาคในธาตุกัมมันตรังสีนั้น
ปริมาณการสลายตัวจะบอกเป็นครึ่งชีวิตเป็นสมบัติเฉพาะตัวของแต่ละไอโซโทป
6.5ปฏิกิริยานิวเคลียร์
หมายถึงกระบวนการที่นิวเคลียส 2
ตัวของอะตอมเดียวกัน หรือนิวเคลียสของอะตอมหนึ่งและอนุภาคย่อย
ของอีกอะตอมหนึ่งจากภายนอกอะตอมนั้น ชนกัน
ทำให้เกิดนิวเคลียสใหม่หนึ่งตัวหรือมากกว่าหนึ่งตัวที่มีจำนวนอนุภาคย่อยแตกต่างจากนิวเคลียสที่เริ่มต้นกระบวนการ
ดังนั้นปฏิกิริยานิวเคลียร์จะต้องทำให้เกิดการเปลี่ยนแปลงของอย่างน้อยหนึ่งนิวไคลด์
ไปเป็นอย่างอื่น
หากนิวเคลียสหนึ่งมีปฏิกิริยากับอีกนิวเคลียสหนึ่งหรืออนุภาคอื่นและพวกมันก็แยกออกจากกันโดยไม่มีการเปลี่ยนแปลงลักษณะของนิวไคลด์ใด
ๆ กระบวนการนี้เป็นแต่เพียงประเภทหนึ่งของการกระเจิงของนิวเคลียสเท่านั้น
ไม่ใช่ปฏิกิริยานิวเคลียร์
ในหลักการ
ปฏิกิริยาสามารถเกิดขึ้นจากการชนกันของอนุภาคมากกว่าสองอนุภาค
แต่เป็นไปได้น้อยมากที่นิวเคลียสมากกว่าสองตัวจะมาชนกันในเวลาเดียวกันและสถานที่เดียวกัน
เหตุการณ์ดังกล่าวจึงเป็นของหายากเป็นพิเศษ (ดูกระบวนการสามอัลฟา
ซึ่งเป็นตัวอย่างหนึ่งที่ใกล้เคียงกับการเกิดปฏิกิริยานิวเคลียร์สามเส้า)
"ปฏิกิริยานิวเคลียร์"
เป็นคำที่หมายความถึงการเปลี่ยนแปลงที่"ถูกเหนี่ยวนำให้เกิด"ในนิวไคลด์
ดังนั้นมันจึงไม่สามารถนำไปใช้กับการสลายกัมมันตรังสีชนิดใด ๆ ได้
(เพราะโดยคำจำกัดความแล้ว การสลายกัมมันตรังสีเป็นกระบวนการที่เกิดขึ้นเอง)
ปฏิกิริยานิวเคลียร์ในธรรมชาติจะเกิดขึ้นจากการปฏิสัมพันธ์ระหว่างรังสีคอสมิกและสสาร
และปฏิกิริยานิวเคลียร์สามารถถูกประดิษฐ์ขึ้นเพื่อให้ได้พลังงานนิวเคลียร์ในอัตราที่ปรับได้ตามความต้องการ
บางทีปฏิกิริยานิวเคลียร์ที่โดดเด่นมากที่สุดจะเป็นปฏิกิริยาลูกโซ่นิวเคลียร์ในวัสดุที่แตกตัวได้
(อังกฤษ: fissionable material) เพื่อเหนี่ยวนำให้เกิดปฏิกิริยานิวเคลียร์ฟิชชั่นและปฏิกิริยานิวเคลียร์ฟิวชันต่างๆขององค์ประกอบเบาที่ผลิตพลังงานให้กับดวงอาทิตย์และดวงดาวทั้งหลาย
ทั้งสองประเภทในการเกิดปฏิกิริยานี้ถูกใช้ในการผลิตอาวุธนิวเคลียร์
ไม่มีความคิดเห็น:
แสดงความคิดเห็น